
How Data Scientists Improve Generated Code
Documentation in Jupyter Notebooks
Michael Mullera, April Yi Wangb, Steven I. Rossc, Justin D. Weiszd, Mayank Agarwale,
Kartik Talamadupulaf, Stephanie Houdeg, Fernando Martinezh, John Richardsi,
Jaimie Drozdalj, Xuye Liuk, David Piorkowskil and Dakuo Wangm

aIBM Research AI, Cambridge, MA, USA
bUniversity of Michigan, Ann Arbor, MI, USA
The first two authors contributed equally to this paper.
cIBM Research AI, Cambridge, MA 02142 USA
dIBM Research AI, Yorktown Heights, NY, USA
eIBM Research AI, Yorktown Heights, NY, USA
fIBM Research AI, Yorktown Heights, NY, USA
gIBM Research AI, Cambridge, MA, USA
hIBM Argentina, La Plata, Argentina
iIBM Research AI, Yorktown Heights, NY, USA
jRensselaer Polytechnic Institute, Troy, NY, USA
kRensselaer Polytechnic Institute, Troy, NY, USA
lIBM Research AI, Yorktown Heights, NY, USA
mIBM Research AI, Cambridge, MA, USA

Abstract
Generative AI models are capable of creating high-fidelity outputs, sometimes indistinguishable from what could be produced
by human effort. However, some domains possess an objective bar of quality, and the probabilistic nature of generative mod-
els suggests that there may be imperfections or flaws in their output. In software engineering, for example, code produced
by a generative model may not compile, or it may contain bugs or logical errors. Various models of human-AI interaction,
such as mixed-initiative user interfaces, suggest that human effort ought to be applied to a generative model’s outputs in
order to improve its quality. We report results from a controlled experiment in which data scientists used multiple models –
including a GNN-based generative model – to generate and subsequently edit documentation for data science code within
Jupyter notebooks. In analyzing their edit-patterns, we discovered various ways that humans made improvements to the
generated documentation, and speculate that such edit data could be used to train generative models to not only identify
which parts of their output might require human attention, but also how those parts could be improved.

Keywords
Code-documentation, Generative AI, Human-AI collaboration, Jupyter notebooks

1. Introduction
For several decades, scholars have explored how humans
and computers might collaborate [1, 2, 3, 4, 5]. Early
work largely focused on a zero-sum “trade-off” model in
which a finite conceptual pool of “initiative” was to be

Joint Proceedings of the ACM IUI 2021 Workshops, April 13-17, 2021,
College Station, USA
" michael1_muller@us.ibm.com (M. Muller);
aprilww@umich.edu (A. Y. Wang); slross@us.ibm.com (S. I. Ross);
jweisz@us.ibm.com (J. D. Weisz); Mayank.Agarwal@ibm.com
(M. Agarwal); krtalamad@us.ibm.com (K. Talamadupula);
Stephanie.Houde@ibm.com (S. Houde); martferc@ar.ibm.com
(F. Martinez); ajtr@us.ibm.com (J. Richards); drozdj3@rpi.edu
(J. Drozdal); liux27@rpi.edu (X. Liu); david.piorkowski@ibm.com
(D. Piorkowski); Dakuo.Wang@ibm.com (D. Wang)
� 0000-0001-7860-163X (M. Muller)

© 2021 Copyright 2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

split between human and computer. Typical approaches
asked, in effect, “who goes first?” and many models went
no further than a single cycle of human-initiates-and-
AI-responds or AI-initiates-and-human-responds (e.g.,
[6]).

More recent work has deconstructed the older concept
of unitary “initiative” into a flexible and collaborative
framework in which increased initiative by one party
(e.g. human) does not imply a decrease of initiative by
the other (e.g. AI) [7]. In addition, the “mixed initia-
tive creative interface” (MICI) framework analyzed by
Deterding et al. [1] and Spoto and Oyelnik [5], further
developed by Muller et at. [3], specifically details how
human and AI partners interact in creative tasks as a
series of back-and-forth exchanges.

In this paper, we examine how humans interact with
a generative AI model in the context of writing data
science documentation. We specifically aim to extend

mailto:michael\protect 1_muller@us.ibm.com
mailto:aprilww@umich.edu
mailto:slross@us.ibm.com
mailto:jweisz@us.ibm.com
mailto:Mayank.Agarwal@ibm.com
mailto:krtalamad@us.ibm.com
mailto:Stephanie.Houde@ibm.com
mailto:martferc@ar.ibm.com
mailto:ajtr@us.ibm.com
mailto:drozdj3@rpi.edu
mailto:liux27@rpi.edu
mailto:david.piorkowski@ibm.com
mailto:Dakuo.Wang@ibm.com
https://orcid.org/0000-0001-7860-163X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the human-initiates-and-AI-responds interaction pattern
to include a step in which a human may make subsequent
edits to the outputs of the model. Prior work by our team
has explored how data scientists use various kinds of
models – including a GNN-based generative model – to
aid the task of adding documentation to data science
code in Jupyter notebooks [8]. In this paper, we conduct
a deeper analysis on the edits made by participants in
that study, to understand the nature of their edit-patterns
and how they “compensate” or “augment” the output of
the generative models. Through a thematic analysis, we
developed a classification of participants’ edit-patterns.

We found that 85% of participants’ edit-patterns fully
accepted the algorithmically-generated text, or built upon
the generated text; and only 15% of the instances involved
a complete rewrite. At first glance, these results suggest
that the generated text was well-accepted. However, par-
ticipants modified the generated text in 41% of the cases.
Thus, (1) a human requests the generation of text; (2) the
AI provides that text; and then (3) the human makes a
decision to use - or not to use - that text, and (4) may go
on to edit the generated text. In the future, these three-
to-four dialogic ”moves” could become the basis for an
extended conversation between human AI.

In this paper, we develop a taxonomy of edit-patterns,
discovering that some edits added missing details while
other edits explained the function of the code. A third
category of edits was primarly concerned with modifying
the formatting or style of the documentation.

2. Background
We discuss recent work in the area of AI and machine
learning applied to data science and software engineer-
ing, as well as the application of generative models to this
domain. We also discuss recent studies on human inter-
actions with generative models in software engineering.

2.1. AI and Machine Learning in
Software Engineering

In recent years, techniques from AI and machine learn-
ing have been applied to various tasks in software engi-
neering, including code completion [9, 10, 11, 12], code
translation [13], code classification [14, 15], API recom-
mendation [16, 17], variable and method naming [18, 19],
type inference [20, 21], bug detection and repair [22, 23,
24, 25, 26, 27], comment description and generation [28,
29, 30, 31, 32, 33], code change summarization [34], and
code clone detection [35]. Allamanis et al. [36] provides a
comprehensive review of the use of AI and machine learn-
ing within data science and software engineering. The
emergence of generative AI techniques for natural lan-
guage, such as GPT-2 [37] and GPT-3 [38], have also been

reflected in code-centric use cases: Brockschmidt et al.
[39] proposed the use of generative models for source
code, and Tufano et al. [40] used generative models to
fix bugs. In this paper, we conduct a deeper analysis of
participant interactions with Wang et al. [8]’s Themisto
documentation-generation system, which incorporates a
GNN-based generative model for generating comments
from code.

2.2. Human-AI Collaboration with
Generative Models in Data Science
and Software Engineering

In a recent study, Weisz et al. [41] examined the use of an
unsupervised neural machine translation (NMT) model
in addressing a task in application modernization, specif-
ically regarding translating code from a legacy language
to a modern one. They found that software engineers
would be tolerant of errors or mistakes in the output of an
NMT model, as the code produced by that model would
be subject to the same review and testing procedures as
code produced by everyone else on their team. In ad-
dition, a code highlighting feature that indicated where
in the code human attention might be needed, based on
an aggregation of the model’s token-level confidences,
was very desirable. Although a subsequent analysis by
Agarwal et al. [42] demonstrated how current metrics
of model confidence may not necessarily correlate with
external truth of code quality (approximated by lint er-
rors), the ability for a generative model to be able to “ask
for help” via code highlights was nonetheless highly val-
ued by software engineers. In this work, we push even
further by seeking to understand whether a generative
model can also specify what kind of it help it needs from
its human user.

3. Method
In order to understand the co-creation process of data
science documentation, we examined Themisto [8] a pro-
totype code documentation generation system that sup-
ports data scientists in writing documentation for com-
putational notebooks.1 Wang et al. [8] conducted an eval-
uation of Themisto with 24 data science professionals. In
this section, we briefly discuss how Themisto generates
documentation from code, as well as the user study setup
and data collection methodology.

1While Jupyter notebooks have been used in educa-
tion, we note that these notebooks are increasingly the ba-
sis of commercial products [43, 44], as in offerings by IBM
[https://developer.ibm.com/components/jupyter/] and Microsoft
[https://notebooks.azure.com/].

A

B

C

D

Figure 1: The Themisto user interface [8] is implemented as a Jupyter Notebook plugin: (A) When the recommended docu-
mentation is ready, a lightbulb icon shows up to the left of the currently-focused code cell. (B – D) shows the three options
in the dropdown menu generated by Themisto, (B) A documentation candidate generated for the code with a deep-learning
model, (C) A documentation candidate retrieved from the online API documentation for the source code, and (D) A prompt
message that nudges users to write documentation on a given topic.

3.1. Themisto: A System for Automatic
Documentation Generation

We implemented the automatic documentation gener-
ation system as an extension to JupyterLab (Figure 1).
The extension generates three types of documentation
for a given code snippet. The first type of documenta-
tion is generated using a Graph Neural Network based
approach [45] which is commonly used in code summa-
rization tasks. The second type of documentation is gen-
erated by retrieving relevant external API documentation
for a code function (e.g., functions defined in Pandas2,
Numpy3, and Scikit-learn4). Lastly, the extension also
provides a prompt-based approach where users are given
a short prompt to manually create the documentation.
For example, if a code cell contains a graphic output,
the extension would generate the prompt to ask users to
interpret the output.

3.2. User Study Setup
We are interested in how users make revisions on the
suggested explanations. Thus, we recruited 26 data sci-
entists to add documentation to a given draft notebook
using the prototype. We prepared two draft notebooks
with the same length (9 code cells) and similar levels of
difficulty, but for two different problems. Each partici-

2https://pandas.pydata.org/docs/reference/index.html
3https://numpy.org/doc/stable/reference/
4https://scikit-learn.org/stable/modules/classes.html

pant was randomly given one of the two notebooks and
asked to document the notebook within 12 minutes; two
participants failed to complete the task within that time-
period, and were excluded from further analysis. Before
the study, we provided a quick demo on the functionality
of the extension.

3.3. Data Collection
We collected the completed final notebooks (N=24) after
participants finished the task. All study sessions were
conducted remotely using a teleconferencing tool and
we recorded participants’ screens with their permissions.
After the session, we conducted a retrospective interview
to ask about their experience and feedback.

We wanted to understand how participants used the
algorithmically-generated documentation. For orienta-
tion, we review that 13 participants made documenta-
tion choices and optional modifications in each of nine
markdown cells in each of two notebooks ("Covid" and
"house") - i.e., 13 participants for each notebook. In the
data from each notebook, we discovered two participants
(per notebook) who did not complete the task, or who
created extra cells. We could not be certain how to "map"
these extra cells to the structure that was common across
the other 11 participants. Because we wanted to compare
participants’ responses in a disciplined way, we treated
each of these people (who created extra cells) as outliers,
and excluded them from analysis. This exclusion left us
with 11 participants per notebook who had worked with

https://pandas.pydata.org/docs/reference/index.html
https://numpy.org/doc/stable/reference/
https://scikit-learn.org/stable/modules/classes.html

Table 1
Edit-Patterns - Applicable as Modifications to Algorithmically-Generated Text

Source text Participant text Participant+Cell

Details - Current
Evaluate a score ### evaluate a score by [5-fold] cross-validation [using P15-house+9
by cross-validation [rmse]
Fill NA/NaN values ### [replace] na/nan values [with the mean] P07-house+6
using the specified
method

the algorithmically-generated documentation.

3.3.1. Preparatory Analysis

To prepare the documentation for analysis, we grouped
all of the texts for each cell together (separately for each
notebook). We then used a bag-of-words method to
identify words (tokens) that were not included in the
algorithmically-generated documentation. In the quo-
tations in this paper, the participant-introduced words
appear in bracketed [blue-ink].5 Table 1 provides an illus-
trative example. This was a slightly conservative method
for identifying new text, because we might fail to detect
that a participant had typed "data" (for example) in their
own usage, rather than including the word "data" from
the algorithmically-generated text. However, we used
this method only to orient ourselves to the texts.

We next read each text by each participant. After read-
ings all of the texts, two researchers agreed upon a code-
book of edit-patterns. One researcher than applied that
codebook rigorously to all of the texts.

3.3.2. Reference Notation

We identify each text in terms of the participant num-
ber (1-26, with two non-completers and two outliers ex-
cluded), the notebook ("covid" or "house"), and the cell
in the notebook (1-9). For example, "p21-house+4" refers
to participant 21, in the "house" notebook, in the 4th
markdown cell.

4. Results: High-Level
Quantitative Comparisons

Participants accepted the algorithmically-generated doc-
umentation unchanged in 45% of the cells, and they edited
the algorithmically-generated documentation in 41% of
the cells. The remaining 9% of the cells were left blank. In

5Readers who use a screenreader may want to consult
https://doccenter.freedomscientific.com/doccenter/doccenter/
rs25c51746a0cc/2012-06-20_TextFormatting/02_TextFormatting.
htm for information on how to access font-attributes through
JAWS.

this workshop paper, we present new analyses to examine
the edit-patterns in the 41% of the cells with participant-
edited documentation.

There were few statistically significant differences be-
tween participant data from the two notebooks. We
briefly report those analyses here, before the qualitative
analyses that are the core of this paper. Because we did
not find differences between the two notebooks, we will
then perform content analyses of participants’ text on
the combined data from the two notebooks in Sections 5
and 6.

4.1. Starting Points for Documentation
We provided three different Sources of documentation:
AI, Query, and Prompt. A chi-square analysis found no
significant differences in the proportions of Sources cho-
sen by participants in each notebook. We also looked at
combinations of Sources - i.e., no discernable source vs.
a single source vs. multiple sources. Again, a chi-square
analysis showed no significant differences between the
notebooks.

4.2. Edit-Patterns
We describe distinct Edit-Patterns below in Sections 5
and 6. Here, we briefly state that we used chi-square
tests to examine whether participants used different edit-
patterns between the two notebooks. Only one of edit-
patterns showed a significant difference, and that pattern
was concerned with the format (not the content) of the
documentation (i.e., levels of headers in the markdown
cell).

Similarly to the "combinations" analysis of Section 4.1,
we found no significant differences across notebooks for
cells with zero edit-patterns, a single edit-pattern, or
multiple edit-patterns.

 https://doccenter.freedomscientific.com/doccenter/doccenter/rs25c51746a0cc/2012-06-20_TextFormatting/02_TextFormatting.htm
 https://doccenter.freedomscientific.com/doccenter/doccenter/rs25c51746a0cc/2012-06-20_TextFormatting/02_TextFormatting.htm
 https://doccenter.freedomscientific.com/doccenter/doccenter/rs25c51746a0cc/2012-06-20_TextFormatting/02_TextFormatting.htm

5. Results: Content-Related
Edit-Patterns

The preceding quantitative analyses showed only a sin-
gle, stylistic difference in participants’ work with the
two notebooks. We therefore combine our qualitative
analyses of edit-patterns across the two notebooks.

We manually coded the edit-patterns in each partici-
pant’s text in each markdown cell, according to our code-
book (Section 3.3.1). For the 22 participants in nine mark-
down cells, we thus coded 99 texts in each notebook, for
a total of 198 coded markdown cells. We applied an infor-
mal version of thematic analysis [46], noting Braun’s and
Clarke’s advice that there are multiple ways of conduct-
ing a thematic analysis [47]. Previous grounded theory
and thematic analysis studies have involved from 6 to
74 participants [48, 49], and so our sample of 22 partic-
ipants is within that conventional range. Within this
sample, we used the saturation practices of Guest et al.
[50] (recommended by Ando et al. [46]) and Majid et al.
[51], defining saturation by a code that appeared from at
least two participants. We made no restrictions on the
number of codes that we identified in a single text. Thus
a text might have zero codes if the participant simply
accepted the algorithmically-generated documentation,
or it might have as many as three or four different codes
in complex cases.

5.1. Details Edit-Patterns (three
subcategories)

Participants expanded on the generated documentation
by adding details. There were three subcategories of
details: Contextual information, information about This-
step (the current step), and information about Subsequent
steps.

5.1.1. Contextual Details

Contextual details could take several forms. P03-house
clarified how the prior steps had produced materials that
were used in the current step:

• ### create the target and the test data [re-create train-
ing] and test [datasets based on] the [size of] the [orig-
inal training dataset] (p03-house+7)

By contrast, P210-covid focused on the treatment of miss-
ing values

• ### check for [any] missing values [note] that [province/
state have quite a few] missing (p021-covid+5)

and P01-covid provided an even-more-detailed account
of the same issue, with commentary on what they had
observed:

• check for [missing/null] values for [some countries/regions
there is no province/state data this is probably correct
and not a flaw in] the [data] (p01-covid+5)6

5.1.2. This-step

This-step edit-patterns occurred in many distinct subcat-
egories. The first subcategory is the addition of a few
words to clarify the current step:

• ### importing libraries ### importing [the necessary]
libraries (p20-covid+1)

While P20-covid’s addition might be only a matter of
emphasis, other simple additions provided much more
specific information about what was being done in the
step. P08-covid changed the meaning of the generated
documentation by adding specificity about what value
was being computed:

• ### check [number of] the missing values (p08-covid+5)

P03–house provided a different kind of specificity about
the types of datasets being used:

• ### read the [training and test datasets] (p03-house+2)

P13-covid engaged in the same type of edit-pattern (in
the other notebook), but included much greater detail:

• ### read a comma-separated values (csv) file into data-
frame [of training] data [and test] data return the first
5 rows [of] the [training] data (p13-covid+2)

We contrast P08-covid, P03-house, and P13-covid, who
were adding information about what was being calcu-
lated or input, vs. P07-house and P26-house, who de-
scribed how the operations were done:

• ### create [train] and test data [by splitting
dataframe] (p07-house+7)

• ### create the target and the test data and [use slicing]
(p026-house+7)

The preceding pair of examples suggests that partici-
pants may solve the same problem, in the same notebook-
cell, in different ways. We found many examples of dif-
ferent strategies and/or different conceptions of what the
intended reader would need to know, such as this con-
trast between P13-covid’s rather minimalist description,
vs. P01-covid’s much more extensive description:

• ### replace a specified phrase [(_)] with another speci-
fied phrase [() then transform] the [datatype to int]
(p13-covid+4)

6We note that P01-covid edited-out the markdown formatting
command, "###". We will have more to say about this kind of stylis-
tic edit-pattern, below.

• ### data [preparation in] the [training] data [set] re-
place the [dashes] with [spaces for] the [date column
and] convert the data [type to] integer (P01-covid+4)

In some cases, participants added specific algorithmic
details that none of the generated texts had included. A
repeated example was to mention (and sometimes dis-
cuss) root mean square error and its importance:

• ### evaluate a score by cross-validation [uses rmse as
an evaluation metric] with [5-fold] cross-validation (p03-
house+9)

• ### evaluate a score by [5-fold] cross-validation [using
rmse] (p15-house+9)

5.1.3. Next-Step

We found a third edit-pattern that anticipated the next
step (i.e., a subsequent cell) in the notebook. P08-covid
briefly stated the use that the inputted data would be put
to:

• ### read [and sanity check] the data (p04-covid+2)

However, in other cases, the participant provided a much
richer description of the next steps, as in this recitation
by P05-covid:

• ### Model A random forest is a meta estimator that fits
a number of decision tree classifiers on various sub-
samples of the dataset and uses averaging to improve
the predictive accuracy and control over-fitting the
[first line below initiates] a model [instance] and the
[second line] fits the model on the [training data] (p05-
covid+8)

5.1.4. Details Patterns Summary

We have shown three edit-patterns in which participants
have provided more detail than was available in the gen-
erated texts. These patterns might be considered as span-
ning an imagined audience’s reading experience. In some
cases, participants wrote Contextual information into
the generated texts. This contextual information was
generally retrospective - i.e., what should the reader have
known in order to understand the code? In contrasting
cases, participants focused less on context, and more on
content within the current cell (This-step). Finally, in a
few cases, participants wrote to anticipate the next cell or
cells. In the Discussion, we will think further about this
kind of participants’ mental model of their audience’s
experiences.

We also wish to acknowledge that some of our category
boundaries are fuzzy. The next category of edit-patterns
poses the question - what is the difference between a De-
tails edit-pattern and an Explanation edit-pattern? With
further research, we may need to redraw this boundary.

5.2. Explanation Edit-Patterns
Sometimes participants went beyond simple details, writ-
ing a more extended Explanation. P02-house and P15-
house provided brief examples, in which they added op-
erational explanations of how to perform the activity in
the cell:

• ### return the first 5 rows [(defvalue=5)] (p02-house+3)

• ### [separate train] and test [subsets post feature en-
gineering set] the target [as saleprice] (p15-house+7)

P02-covid and P14-house went further, documenting the
nature of source data files and their formats, and also the
functional significance of additional modules:

• read the [data: from] the [two files: ‘traincsv‘ and
‘testcsv‘ they contain] data [in csv format now ‘train‘
contains] the [train] data [and ‘test‘ contains] the [test]
data [start on] the [train] data first (p02-covid+2)

• ### importing libraries - pandas for [dataframes (like
excel spreadsheet)] - numpy for [fast vector operations
- sklearn] for [simple] data analysis [(in] this [case
linear model)] (p14-house+1)

The Explanation edit-pattern brings in different types
of information, including operational aspects and ex-
tended explanatory material about data files and pro-
grammatic resources. As we noted above, with more
data, we may discover that Explanations may need to
be combined with Details. Another possibility is that
Explanations may turn out to be a subset of Tutorial
edit-patterns, which we describe in the next subsection.

5.3. Tutorial Edit-Patterns
In a more complex pattern, participants appeared to be
teaching the reader how to do the analysis. For example,
P05-covid provide detailed explanations about how to
carry-out a series of operations in python:

• ### convert [training] data [remove dashes (‘-‘) in] the
[dates this is done by applying] the [‘replace‘ function
‘astype‘ sets] the [‘date‘ column to integer type] (p05-
covid+4)

Similarly, P03-house gave instructions about how to work
with several datasets, including which columns (factors)
were involved and how to process those columns:

• [## dataset preparation] the [next few cells prepare]
the [train and test datasets] ### concatenate the [train
and test datasets] with a [subset of columns (mssub-
class to salecondition)] is [format(a b)] (p03-house+4)

In a different cell, P05-covid explained the meaning of a
function call and gave further instruction about how to
use the results of the function:

• ### check the missing values detect the [number of]
missing values for [each column ‘isnull()‘ returns] an
[array of indicators of whether each value in a column
is] missing [and ‘sum()‘ calculates] the [total number
of] missing values [along] that [column] (p05-covid+5)

P11-house taught how a conceptual operation worked
and also gave advice about the naming of the statistical
action:

• [#####] this code cell is for [handling] missing val-
ues [which are replaced with] the [mean value] for
[that feature] this is [also known as column-wise mean-
imputation] (p11-house+6)

Finally, we note that P24-covid took a somewhat different
tutorial strategy. They left the original generated text in-
tact as provided by the algorithm, and then added a link to
more information about the python code-structures that
were used in the cell that the algorithm had described:

• p24-covid/expt ### replace a specified phrase with
another specified phrase [[for more information about
lambda](https://realpythoncom/python-lambda/)] (p24-
covid+4)

Tutorial edit-patterns went much further than Expla-
nation edit-patterns (which themselves had gone further
than Details edit-patterns). Tutorial edit-patterns provide
not only how-to information, but also interpretations of
the meaning or purpose of actions, and in one case a link
to further information.

5.4. Rewriting Edit-Patterns
In the preceding subsection, we began to describe a di-
mension of increasing complexity in the information that
participants provided, and also (we infer) increasing ef-
fort on the part of the informants to think "beyond" what
was given in the generated text. The last edit-pattern in
this series involves even more "beyond" work: beyond
previous transformations of the generated text, and prob-
ably beyond previous levels of effort. We call this edit-
pattern "Rewriting," because it involves nearly complete
replacement of the generated text.

It may be that the generated text in certain cells led to
more instances of Rewriting. For example, three different
participants rewrote the generated text of cell 4 of the
House notebook:

• ### [join features from train and test into one df] (p15-
house+4)

• ### [transform and clean] the [data] (p22-house+4)

• ### [concat train and test col salecondition] (p02-
house+4)

Similarly, two people rewrote the contents of cell 9 of the
Covid notebook:

• ### [make predictions] (p17-covid+9)

• ### [test] to [see how] the [model performs] (p20-
covid+9)

While it initially appears that Rewritten cells were
relatively brief, we found that two other participants
Rewrote the same cell (cell 9 of the Covid notebook) at
much greater length:

• ### [run] the [model] to [generate predictions] on the
[test data] and [store them as a ‘dataframe‘] (p04-
covid+9)

• use the [trained model] to [predict] the [target] on the
[test data] (p05-covid+9)

In some cases, partipants Rewrote the generated text
at a higher level of sophsitication:

• ### [one hot encode] the [features] (p15-house+5)

And in one case, the participant Rewrote in a very sum-
mary fashion, only listing a series of steps:

• [modeling process - subsetting data - cleaning data -
getting rid of nulls -model training] (p14-house+4)

In the Rewriting edit-pattern, we see diverse strategies,
ranging from brief summaries to extensive new text, as
well as high-level abstractions. Significantly, in multiple
cases, participants made distinctly different Rewritings
of the same generated text (i.e., in the same cell of the
notebook). Thus, while the category of the edit-pattern is
the same, the individual strategies can be quite different.
We recall that we saw analogous patterns in the This-step
Details edit-patterns of subsesction 5.1.2. While there
may be agreement among participants that the generated
text in certain cells requires a certain type of change,
participants clearly adopt different strategies about how
to make those changes.

5.5. Content Edit-Patterns Summary
In this part of Results, we have examined how partici-
pants changed the contents of the generated texts. Figure
2 summarizes a dimension that runs from simple Details,
to more complex Explanations, to instructive Tutorials,
and finally to complete Rewritings of the generated text.
Collectively, participants have an extensive repertoire of
edit-patterns that they apply to particular problems in
particular documentation cells. We next examine more
stylistic changes that participants applied to generated
text.

Figure 2: Dimension of Content Edit-Patterns.
Figure description: Graphical display of four Content Edit-Patterns, in a two-dimensional abstract sapce. The horizontal
axis represents the complexity of the edit-patterns. The vertical axis represents the inferred amount of participant effort to
make the changes. The four classes of edit-patterns run from the lower left (low-low) to the upper right (high-high), in the
order of Details, Explanations, Tutorials, and Rewritings.

6. Results: Stylistic Edit-Patterns

6.1. Modifying document hierarchies
Sometimes in combination with other edit-patterns, par-
ticipants modified the markdown formatting from the
generated texts. Initially, all markdown texts were pro-
vided at the same hierarchical level (###). In multiple
cases, participants modified those levels, placing texts in
super-order / sub-order relation to one another:

• [#####] this code cell is for [handling] missing val-
ues [which are replaced with] the [mean value] for
[that feature] this is [also known as column-wise mean-
imputation] (p11-house+6)

P17-covid modified the header markdown specification
when combining the contents of two different forms of
generated text:

• ### [create] a [classifier ####] random forest [classifier]
(p17-covid+8)

Further research will be needed to understand if these
stylistic/formatting edits are related to changes to the
words in the documentation.

6.2. Completing a Sentence
Some of the changes to content appeared to clarify what
was being done in the code. The primary subcategory of
these changes was to add a verb to a noun-phrase:

• ### [fit] the model (p01-covid+8)

• ### [train the] model (p10-house+8)

Some participants added the verb in a different position
in the sentence. In these two examples, we see P21-covid
and P24-covid modifying the same generated text, but
with different versbs:

• ### model [creating] (p21-covid+8)

• ### model [training] (p24-covid+8)

However, participants also engaged in more complex
ways of completing a sentence. For example, P01-covid
both added a verb and changed the object of that verb:7

• [generate] the [predictions] (p01-covid+9)

While editing the same cell, P02-house, P07-house, and
P15-house added the same verb, but then made different
modifications to the object of that verb:

• ### [fit regression] model (p02-house+8)

• ### [fit] a lasso linear model [to the training data]
(p07-house+8)

• ### [train] lasso [cv] linear model (p15-house+8)

There were also even more complex cases, in which it
is not clear if the participant’s purpose was to complete
a sentence Here, we repeat one example of P17-covid
from the previous subsection, which illustrates our point
about the ambiguity of complex cases:

• ### [create] a [classifier ####] random forest [classifier]
(p17-covid+8)

• ### [leverage] the random forest model and [fit] the
model [with training] dataset [(a] random forest is
a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and
uses averaging to improve the predictive accuracy and
control [over-fitting)] (p13-covid+8)

7We use ”verb” and ”object” in the technical senses of English-
language grammar (e.g., [52]). A ”verb” performs an action. An
”object” receives the effect of that action.

6.3. Conversational Tone
We observed a further stylistic modification which ap-
peared to make the generated text more conversational.
To avoid asserting our own judgments of what ”conversa-
tional” might mean, we show only examples in which the
participant added a personal pronoun - typically ”we” or
”you”. For ease in reading, we have bolded those pronouns
in the following examples:

• importing libraries: [in] this code [segmentyou import
the python] libraries [first that include ‘numpy‘] and
[‘panda‘ you also import] a [class from sklean if you
need to display some warning import the warnings]
library [as shown] (p21-covid+1)

• ### [define] and [configure] the model a random forest
is a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and
uses averaging to improve the predictive accuracy and
control over-fitting [we also train] the model [with
‘fit()‘] (p04-covid+8)

• [##### here we] evaluate the [square-root of] the [5-
fold cross-validated mean-squared-error of] the [trained]
model with the [training set ‘(x_train y)‘ (p11-house+9)

• ### [we now show] the [predicted values] (p24-covid+9)

6.4. Stylistic Edit-Patterns Summary
We acknowledge that the distinction between content
and style is far from clear (e.g., [53]). Therefore, we con-
sider that our current categorization of Content-Related
edit-patterns and Stylistic edit-patterns may require re-
vision. With larger datasets, we may for example con-
clude that Conversational Tone is more related to Tutorial
changes, and less related to ”style.” The same may occur
with Completing a Sentence. We will also need to under-
stand better the relationship of header-styles to content
in brief documentation text snippets.

7. Results: Summary Statistics of
Edit-Patterns

We computed the percentage of the Content-edited cells
in which each of the above Content edit-pattern appeared.
Details edit-patterns were the most frequent. This may be
unsurprising, because these kinds of edit-patterns took
relatively little effort (Figure 2). In general, edit-patterns
that were most costly of effort (Tutorial, Rewritten) had
lower frequencies of occurrence, with Rewritten edit-
patterns occurring in fewer than 15% of the edited cells.

Table 2
Percent of All Edit-Patterns in Edited Cells

Edit-Pattern Percentage of All Edited Cells

Details-Contextual 5.08%
Details-This-step 33.90%
Details-Next-step 5.08
Explanations 11.02%
Tutorial 8.47%
Rewritten 14.41%

Markdown headers 5.08%
Complete sentence 12.71%
Conversational tone 4.24%

Note: A single cell could contain multiple edit-patterns.
Therefore, sums of percentages may not be meaningful.

8. Discussion
These results have implications for the design of algo-
rithmic documentation systems. Taken together with
our prior work on TransCoder, we can also see emergent
ideas about how people can understand and make use
of AI outcomes, even in the absence of formal explana-
tory systems (e.g., Explainable AI, or XAI). Finally, these
two projects point us toward important questions in the
design of future human-AI collaborative systems.

8.1. Learning from Participants’
Improvements

The results we reported on participants’ editing patterns
lead us to think about a few implications to further im-
prove the automatic documentation approach. First, the
Details edit-patterns, Explanation edit-patterns, and Tu-
torial edit-patterns are relevant to the purpose of the
notebook and the target audience. We believe that a
future version of the generative approach should tailor
the automatic documentation based on the usage sce-
nario. Data scientists can benefit from more candidate
documentation where the level of details varied.

With a larger dataset, we could associate these edit-
patterns to particular patterns in the algorithmically-
generated texts. Based on those associations, we could
modify the algorithms to anticipate the kinds of edits
that humans have previously made (e.g., [54]). For exam-
ple, if we can remove the need for Details-related and
Conversational-Tone edits, then humans can focus on
higher-value editing, such as Tutorials. We may then see
emergent categories of even more task-specific and/or
domain-oriented edit-patterns, when humans no longer
need to put work into less significant edits.

One way to do this, is to include a reinforcement learn-
ing component into the algorithm that could learn from
users’ modifications to the proposed texts. Our current

GNN model relies on the size of the training dataset to en-
sure the quality of the results. However, data science code
snippets are patternless and are of limited use for gener-
ating explanations. In the future, we can combine deep
reinforcement learning with our current GNN model
[55] to improve the performance and generalizability of
the results. This can help provide consistent stylistic
documentation in terms of the writing style, sentence
structure, and level of details.

8.2. Flawed Generative Outcomes can be
Useful Outcomes

In our earlier generative documentation paper [8], we
learned that people accepted algorithmically-produced
documentation in 45% of the cells. In this workshop
paper’s analysis of the 41% of edited cells, participants
retained at least part of the generated text in over 85% of
the cells (Details, Explanations, Tutorials). The fact that
they chose to do the extra work to Rewrite in only 15%
of the cells, is evidence that they mostly chose to work
with imperfect text rather than to replace it.

This outcome is consistent with our previous study of
code translation, in which engineers reported that they
preferred an imperfect translation to no translation at all.
While we hope to improve our generative algorithms in
both research programs, we also envision future studies
in which we will calibrate the quality of the outcomes, to
determine the threshold of ”poor quality” below which an
algorithm should not be deployed. We could then perhaps
provide a more ”skeletal” outcome, such as an outline of
documentation rather than full-text. We could also treat
”poor-quality” instances as higher-priority opportunities
for algorithmic improvement.

8.3. Deepening Human-AI Collaborations
We now consider each of our research programs (transla-
tion and documentation) in terms of published patterns
of human-AI collaboration [6, 1, 2, 4, 7, 5]. In both of
our studies, the human provides some initial information
(source code in both cases), and the generative algorithm
responds with a proposed outcome text (target code or
documentation, respectively). After that, with minimalist
support, the human has to make their own way - e.g., by
choosing among alternative translations for sections of
the target code, or by manually editing the documenta-
tion.

These patterns remain consistent with simple initiative
models (e.g., [2, 4]), and fall short of the richer on-going
interactions of some of the experimental MICI applica-
tions [1, 5], with their potential of AI-augmentation in
support of skilled human work. We anticipate that fu-
ture versions of both projects could move toward longer
and richer exchanges between human and AI (e.g., [6]).

If the human edits the target code in the TransCoder
project, then a secondary AI (e.g., [12]) might assist by
generating completion of the human’s new code or sug-
gesting additional modifications to the target to remain
consistent with the changes. This secondary AI would be
”aware” of the original code, and could provide additional
type-ahead support, advice, or consultation as needed.
Similarly, if the human edits the generated text in the
Documentation project, then a secondary AI (e.g., [56])
could provide assistance with Details types of edits, but
could also provide language-quality (Stylistic) support
for more complex Tutorial accounts, or even narratives
(e.g., [57]).

8.4. How Does a Generative AI Model
Ask for Help?

Our work highlights an opportunity for enriching human
interactions with generative models. At a base level, a
generative model takes input (e.g. code) and produces
output (e.g. documentation for that code). Agarwal et al.
[42] demonstrate how a generative model can produce
confidence scores alongside its output, and Weisz et al.
[41] show the utility such scores can have in steering
human attention toward reviewing portions of the output
in which the model has low confidence. In this work, we
demonstrate how having an understanding of the nature
of human edit-patterns to a generative model’s output
can enable a generative model to not only identify where
human attention is needed, but also how human effort
can be used to improve the quality of its output.

One of the interesting questions will be exactly how
to choose among those alternatives - i.e., when is type-
ahead useful, and how should a watchful but respectful
AI intervene with advice, and what dialogic or other com-
munication structures should be involved in an on-going
AI-human consultation [58, 59, 60])? Our experiences
with the NMT algorithm in the TransCoder experiment
showed that, with a sufficiently broad beam-search [61],
we could generate a manageable set of alternative trans-
lations, which could be compared using an algorithm like
[62] to determine regions of agreement between the trans-
lations as well as regions of uncertainty along with the
alternatives considered for the uncertain regions. These
alternatives could then serve as informal explanations
- e.g., ”Q: Why is the output marked as uncertain in this
region? A: Because the algorithm considered multiple pos-
sible translations at this point, and this is what they were.”
The GNN in the Documentation project might also be
modified to produce multiple possible texts, with sim-
ilar explanatory power (”Q: Why is this documentation
marked as uncertain...”).

If there are multiple, alternative outcomes with no
emergent ”most-probable” alternative, then this could
become an initiation point at which the algorithm de-

tects the need for human assistance. One way to imple-
ment this request-for-help is as a ”human-in-the-loop”
paradigm, in which the human responds to the needs
of the algorithm. We also envision situations in which
the human may be in the midst of editing code or text,
and may ask the algorithm to serve as a text-assistant
for the human’s on-going editing work. This could be-
come an example of the ”AI in the loop” paradigm that
we discussed at last year’s workshop. In these ways, we
could move from the relatively single-process ”initiative”
models of [2, 4, 7], and toward a more collaborative and
on-going series of interactions as in [1, 5].

8.5. Limitations
In order to conduct a controlled study, we sacrificed eco-
logical validity. We asked participants to document some-
one else’s notebook. By contrast, the canonical case in
Jupyter notebooks is to document one’s own code. A
future goal should be a more naturalistic practice of doc-
umenting my notebook.

Paradoxically, for precision of evaluation, we may also
need to perform an even more controlled study, in which
each person receives only one algorithm’s text at a time.
This approach could help us to assess each algorithmic
approach more independently than in the preliminary
experiment in this workshop paper.

We also note that our analytic method could be strength-
ened in future research. Our bag-of-words approach was
insensitive to word-order, and we looked only at pat-
terns of added words. Future work should also examine
patterns of deleted words.

Finally, we note the obvious sampling weaknesses. We
conducted a relatively small study in a single institution.
We hope to examine similar practices in other settings,
and with more participants.

9. Conclusion
In this workshop paper, we have addressed topics in
human-AI collaboration in data science and software en-
gineering. We reported text analytic results from a study
of generative documentation, showing that participants
accepted generated text with or without modification in
the majority of instances. These results are consistent
with our earlier work, in which engineers were enthusi-
astic about using imperfect NMT-generated translations
of software code. Similarly, participants in this study
were also quite ready to accept or to work with imperfect
GNN-generated texts. We also analyzed the edit-patterns
in the generated text, developing categories that suggest
future work directions. Finally, going beyond early uni-
directional models of ”initiative,” we sketched promising

directions for longer-term, on-going human-AI collabo-
rations.

References
[1] S. Deterding, J. Hook, R. Fiebrink, M. Gillies, J. Gow,

M. Akten, G. Smith, A. Liapis, K. Compton, Mixed-
initiative creative interfaces, in: Proceedings of
the 2017 CHI Conference Extended Abstracts on
Human Factors in Computing Systems, 2017, pp.
628–635.

[2] E. Horvitz, Principles of mixed-initiative user in-
terfaces, in: Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, 1999, pp.
159–166.

[3] M. Muller, J. Weisz, W. Geyer, Mixed initiative
generative ai interfaces: An analytic framework for
generativeai applications (2020).

[4] R. Parasuraman, T. B. Sheridan, C. D. Wickens, A
model for types and levels of human interaction
with automation, IEEE Transactions on systems,
man, and cybernetics-Part A: Systems and Humans
30 (2000) 286–297.

[5] A. Spoto, N. Oyelnik, Library of mixed initiative
creative interfaces, "http://mici.codingconduct.cc",
2017. [Online; accessed 21-December-2020].

[6] J. A. Biles, Genjam: Evolution of a jazz improviser,
in: Creative evolutionary systems, Elsevier, 2002,
pp. 165–187.

[7] B. Shneiderman, Human-centered artificial intelli-
gence: Reliable, safe & trustworthy, International
Journal of Human–Computer Interaction 36 (2020)
495–504.

[8] A. Y. Wang, D. Wang, J. Drozdal, M. Muller,
S. Park, J. D. Weisz, X. Liu, L. Wu, C. Dugan,
Themisto: Towards automated documentation gen-
eration in computational notebooks, arXiv preprint
arXiv:2102.12592 (2021).

[9] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. Devanbu,
On the naturalness of software, in: 2012 34th In-
ternational Conference on Software Engineering
(ICSE), IEEE, 2012, pp. 837–847.

[10] V. Raychev, M. Vechev, E. Yahav, Code completion
with statistical language models, in: Proceedings of
the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2014,
pp. 419–428.

[11] M. Bruch, M. Monperrus, M. Mezini, Learning from
examples to improve code completion systems, in:
Proceedings of the 7th joint meeting of the Euro-
pean software engineering conference and the ACM
SIGSOFT symposium on the foundations of soft-
ware engineering, 2009, pp. 213–222.

[12] A. Svyatkovskiy, S. K. Deng, S. Fu, N. Sundaresan,

Intellicode compose: Code generation using trans-
former, arXiv preprint arXiv:2005.08025 (2020).

[13] B. Roziere, M.-A. Lachaux, L. Chanussot, G. Lam-
ple, Unsupervised translation of programming lan-
guages, Advances in Neural Information Processing
Systems 33 (2020).

[14] L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin,
Convolutional neural networks over tree struc-
tures for programming language processing, in:
D. Schuurmans, M. P. Wellman (Eds.), Proceed-
ings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, AAAI Press, 2016, pp. 1287–
1293. URL: http://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/view/11775.

[15] V. Jayasundara, N. D. Q. Bui, L. Jiang, D. Lo,
Treecaps: Tree-structured capsule networks for
program source code processing, arXiv preprint
arXiv:1910.12306 (2019).

[16] S. Gu, T. Lillicrap, I. Sutskever, S. Levine, Continu-
ous deep q-learning with model-based acceleration,
in: International Conference on Machine Learning,
2016, pp. 2829–2838.

[17] N. D. Q. Bui, Y. Yu, L. Jiang, SAR: learning
cross-language API mappings with little knowl-
edge, in: M. Dumas, D. Pfahl, S. Apel, A. Russo
(Eds.), Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software En-
gineering, ESEC/SIGSOFT FSE 2019, Tallinn, Es-
tonia, August 26-30, 2019, ACM, 2019, pp. 796–
806. URL: https://doi.org/10.1145/3338906.3338924.
doi:10.1145/3338906.3338924.

[18] M. Allamanis, H. Peng, C. Sutton, A convolutional
attention network for extreme summarization of
source code, in: International conference on ma-
chine learning, 2016, pp. 2091–2100.

[19] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec:
Learning distributed representations of code, Pro-
ceedings of the ACM on Programming Languages
3 (2019) 1–29.

[20] V. J. Hellendoorn, C. Bird, E. T. Barr, M. Allamanis,
Deep learning type inference, in: Proceedings of
the 2018 26th acm joint meeting on european soft-
ware engineering conference and symposium on
the foundations of software engineering, 2018, pp.
152–162.

[21] J. Wei, M. Goyal, G. Durrett, I. Dillig, Lambdanet:
Probabilistic type inference using graph neural net-
works, arXiv preprint arXiv:2005.02161 (2020).

[22] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bac-
chelli, P. Devanbu, On the "naturalness" of buggy
code, in: 2016 IEEE/ACM 38th International Con-
ference on Software Engineering (ICSE), IEEE, 2016,
pp. 428–439.

[23] M. Pradel, K. Sen, Deepbugs: A learning approach
to name-based bug detection, Proceedings of the
ACM on Programming Languages 2 (2018) 1–25.

[24] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, R. Singh,
Neural program repair by jointly learning to local-
ize and repair, arXiv preprint arXiv:1904.01720
(2019).

[25] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, K. Wang,
Hoppity: Learning graph transformations to detect
and fix bugs in programs, in: International Confer-
ence on Learning Representations, 2019.

[26] M. White, M. Tufano, M. Martinez, M. Monperrus,
D. Poshyvanyk, Sorting and transforming program
repair ingredients via deep learning code similari-
ties, in: 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2019, pp. 479–490.

[27] V. J. Hellendoorn, P. Maniatis, R. Singh, C. Sutton,
D. Bieber, Global Relational Models of Source Code,
in: International Conference on Learning Represen-
tations, 2020.

[28] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, K. Vijay-Shanker, Automatic generation of
natural language summaries for java classes, in:
2013 21st International Conference on Program
Comprehension (ICPC), IEEE, 2013, pp. 23–32.

[29] S. Iyer, I. Konstas, A. Cheung, L. Zettlemoyer,
Summarizing source code using a neural attention
model, in: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016, pp. 2073–2083.

[30] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-
Vásquez, D. Poshyvanyk, R. Oliveto, Automatically
assessing code understandability: How far are we?,
in: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE,
2017, pp. 417–427.

[31] X. Hu, G. Li, X. Xia, D. Lo, Z. Jin, Deep code com-
ment generation, in: 2018 IEEE/ACM 26th Inter-
national Conference on Program Comprehension
(ICPC), IEEE, 2018, pp. 200–20010.

[32] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu,
P. S. Yu, Improving automatic source code sum-
marization via deep reinforcement learning, in:
Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering,
2018, pp. 397–407.

[33] U. Alon, S. Brody, O. Levy, E. Yahav, code2seq: Gen-
erating sequences from structured representations
of code, arXiv preprint arXiv:1808.01400 (2018).

[34] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto,
A. Marcus, G. Canfora, Automatic generation of
release notes, in: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, 2014, pp. 484–495.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
https://doi.org/10.1145/3338906.3338924
http://dx.doi.org/10.1145/3338906.3338924

[35] M. White, M. Tufano, C. Vendome, D. Poshyvanyk,
Deep learning code fragments for code clone detec-
tion, in: 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
IEEE, 2016, pp. 87–98.

[36] M. Allamanis, E. T. Barr, P. Devanbu, C. Sutton, A
survey of machine learning for big code and natu-
ralness, ACM Computing Surveys (CSUR) 51 (2018)
1–37.

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, Language models are unsupervised
multitask learners, OpenAI blog 1 (2019) 9.

[38] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, et al., Language models are few-shot
learners, arXiv preprint arXiv:2005.14165 (2020).

[39] M. Brockschmidt, M. Allamanis, A. L. Gaunt,
O. Polozov, Generative code modeling with graphs,
arXiv preprint arXiv:1805.08490 (2018).

[40] M. Tufano, C. Watson, G. Bavota, M. D. Penta,
M. White, D. Poshyvanyk, An empirical study on
learning bug-fixing patches in the wild via neural
machine translation, ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 28
(2019) 1–29.

[41] J. D. Weisz, M. Muller, S. Houde, J. Richards, S. L.
Ross, F. Martinez, M. Agarwal, K. Talamadupula,
Perfection not required? human-ai partnerships in
code translation, in: Proceedings of IUI 2021, 2021.

[42] M. Agarwal, K. Talamadupula, S. Houde, F. Mar-
tinez, M. Muller, J. Richards, S. Ross, J. D. Weisz,
Quality estimation & interpretability for code trans-
lation, arXiv preprint arXiv:2012.07581 (2020).

[43] M. B. Kery, M. Radensky, M. Arya, B. E. John, B. A.
Myers, The story in the notebook: Exploratory
data science using a literate programming tool, in:
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018, pp. 1–11.

[44] J. M. Perkel, Why jupyter is data scientists’ com-
putational notebook of choice., Nature 563 (2018)
145–147.

[45] A. LeClair, S. Haque, L. Wu, C. McMillan, Improved
code summarization via a graph neural network,
arXiv preprint arXiv:2004.02843 (2020).

[46] H. Ando, R. Cousins, C. Young, Achieving satura-
tion in thematic analysis: Development and refine-
ment of a codebook, Comprehensive Psychology 3
(2014) 03–CP.

[47] V. Braun, V. Clarke, Using thematic analysis in
psychology, Qualitative research in psychology 3
(2006) 77–101.

[48] C. M. Baker, L. R. Milne, R. E. Ladner, Understand-
ing the impact of tvis on technology use and se-
lection by children with visual impairments, in:
Proceedings of the 2019 CHI Conference on Hu-

man Factors in Computing Systems, 2019, pp. 1–13.
[49] A. Pradhan, B. Jelen, K. A. Siek, J. Chan, A. Lazar,

Understanding older adults’ participation in design
workshops, in: Proceedings of the 2020 CHI Con-
ference on Human Factors in Computing Systems,
2020, pp. 1–15.

[50] G. Guest, A. Bunce, L. Johnson, How many inter-
views are enough? an experiment with data sat-
uration and variability, Field methods 18 (2006)
59–82.

[51] M. A. A. Majid, M. Othman, S. F. Mohamad, S. A. H.
Lim, Achieving data saturation: evidence from a
qualitative study of job satisfaction, Social and
Management Research Journal 15 (2018) 66–77.

[52] B. S. Azar, D. A. Azar, R. S. Koch, Understanding
and Using English Grammar: Workbook, Longman,
2000.

[53] G. Lakoff, A figure of thought, Metaphor and
symbol 1 (1986) 215–225.

[54] K.-H. Zeng, M. Shoeybi, M.-Y. Liu, Style example-
guided text generation using generative adversar-
ial transformers, arXiv preprint arXiv:2003.00674
(2020).

[55] P. Almasan, J. Suárez-Varela, A. Badia-Sampera,
K. Rusek, P. Barlet-Ros, A. Cabellos-Aparicio, Deep
reinforcement learning meets graph neural net-
works: exploring a routing optimization use case,
arXiv (2019) arXiv–1910.

[56] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the
limits of transfer learning with a unified text-to-
text transformer, arXiv preprint arXiv:1910.10683
(2019).

[57] R. Kazman, G. Abowd, L. Bass, P. Clements,
Scenario-based analysis of software architecture,
IEEE software 13 (1996) 47–55.

[58] E. Horvitz, Uncertainty, action, and interaction: In
pursuit of mixed-initiative computing, Intelligent
Systems (1999) 17–20.

[59] S. Ross, E. Brownholtz, R. Armes, Voice user in-
terface principles for a conversational agent, in:
Proceedings of the 9th International Conference on
Intelligent User Interfaces, 2004, pp. 364–365.

[60] S. Ross, E. Brownholtz, R. Armes, A multiple-
application conversational agent, in: Proceedings
of the 9th International Conference on Intelligent
User Interfaces, 2004, pp. 319–321.

[61] C. Wilt, J. Thayer, W. Ruml, A comparison of greedy
search algorithms (2010).

[62] E. Myers, An o(nd) difference algorithm and its
variations, Algorithmica 1 (1986) 251–266.

	1 Introduction
	2 Background
	2.1 AI and Machine Learning in Software Engineering
	2.2 Human-AI Collaboration with Generative Models in Data Science and Software Engineering

	3 Method
	3.1 Themisto: A System for Automatic Documentation Generation
	3.2 User Study Setup
	3.3 Data Collection
	3.3.1 Preparatory Analysis
	3.3.2 Reference Notation

	4 Results: High-Level Quantitative Comparisons
	4.1 Starting Points for Documentation
	4.2 Edit-Patterns

	5 Results: Content-Related Edit-Patterns
	5.1 Details Edit-Patterns (three subcategories)
	5.1.1 Contextual Details
	5.1.2 This-step
	5.1.3 Next-Step
	5.1.4 Details Patterns Summary

	5.2 Explanation Edit-Patterns
	5.3 Tutorial Edit-Patterns
	5.4 Rewriting Edit-Patterns
	5.5 Content Edit-Patterns Summary

	6 Results: Stylistic Edit-Patterns
	6.1 Modifying document hierarchies
	6.2 Completing a Sentence
	6.3 Conversational Tone
	6.4 Stylistic Edit-Patterns Summary

	7 Results: Summary Statistics of Edit-Patterns
	8 Discussion
	8.1 Learning from Participants' Improvements
	8.2 Flawed Generative Outcomes can be Useful Outcomes
	8.3 Deepening Human-AI Collaborations
	8.4 How Does a Generative AI Model Ask for Help?
	8.5 Limitations

	9 Conclusion

